Diffusion Kurtosis Magnetic Resonance Imaging and Its Application to Traumatic Brain Injury
نویسندگان
چکیده
Title of Document: DIFFUSION KURTOSIS MAGNETIC RESONANCE IMAGING AND ITS APPLICATION TO TRAUMATIC BRAIN INJURY Jiachen Zhuo, Doctor of Philosophy, 2011 Directed By: Professor Jonathan Z. Simon Department of Electrical and Computer Engineering Diffusion tensor imaging (DTI) is a popular magnetic resonance imaging technique that provides in vivo information about tissue microstructure, based on the local water diffusion environment. DTI models the diffusion displacement of water molecules in tissue as a Gaussian distribution. In this dissertation, to mimic the complex nature of water diffusion in brain tissues, a diffusion kurtosis model is used, to incorporate important non-Gaussian diffusion properties. This diffusion kurtosis imaging (DKI) is applied in an experimental traumatic brain injury in a rat model, to study whether it provides more information on microstructural changes than standard DTI. Our results indicate changes in ordinary DTI parameters, in various brain regions following injury, normalize to the baseline by the sub-acute stage. However, DKI parameters continue to show abnormalities at this sub-acute stage, as confirmed by immunohistochemical examination. Specifically, increased mean kurtosis (MK) was found to associate with increased reactive astrogliosis, a hallmark for inflammation, even in regions far removed from the injury foci. Findings suggest that monitoring changes in MK enhances the investigation of molecular and morphological changes in vivo. Extending DKI to clinical usage, however, poses several challenges: (a) long image acquisition time (~20 min) due to the augmented measurements required to fit the more complex model, (b) slow image reconstruction (~90 min) due to required nonlinear fitting and, (c) errors associated with fitting the inherently low signal-tonoise ratio (SNR) images from higher diffusion weighting. The second portion of this dissertation is devoted to developing imaging schemes and image reconstruction methods that facilitate clinical DKI applications. A fast and efficient DKI reconstruction method is developed with a reconstruction time of 2-3 seconds, with improved accuracy and reduced variability in DKI estimation over conventional methods. Further analysis of diffusion weighted imaging schemes and their affect on DKI estimation leads to the identification of two clinically practical optimal imaging schemes (needing 7-10 min) that perform comparably to traditional schemes. The effect of SNR and reconstruction methods on DKI estimation is also studied, to provide a foundation for interpreting DKI results and optimizing DKI protocols. DIFFUSION KURTOSIS MAGNETIC RESONANCE IMAGING AND ITS APPLICATION TO TRAUMATIC BRAIN INJURY
منابع مشابه
Application of Magnetic Resonance Spectroscopy in Neurocognitive Assessment After Head Injury: A Systematic Review
Background: Traumatic brain injury is believed to be a public health disorder with some complications. Post Traumatic Neurocognitive Disorders (PTND) received much attention among these complications because of the high prevalence of mild traumatic brain injuries. On the other hand, advanced neuroimaging is increasingly becoming an exciting modality in the field of traumatic brain injury. Magne...
متن کاملDiffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury
Diffusion Kurtosis Imaging (DKI) provides quantifiable information on the non-Gaussian behavior of water diffusion in biological tissue. Changes in water diffusion tensor imaging (DTI) parameters and DKI parameters in several white and gray matter regions were investigated in a mild controlled cortical impact (CCI) injury rat model at both the acute (2 h) and the sub-acute (7 days) stages follo...
متن کاملChanges in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model
Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic ...
متن کاملDiffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances
Traumatic axonal injury is a progressive process evoked by shear forces on the brain, gradually evolving from focal axonal alteration and cumulating in neural disconnection. Clinical classifiers and conventional neuroimaging are limited in traumatic axonal injury detection, outcome prediction, and treatment guidance. Diffusion weighted imaging is an advanced magnetic resonance imaging (MRI) tec...
متن کاملRepetitive Model of Mild Traumatic Brain Injury Produces Cortical Abnormalities Detectable by Magnetic Resonance Diffusion Imaging, Histopathology, and Behavior
Noninvasive detection of mild traumatic brain injury (mTBI) is important for evaluating acute through chronic effects of head injuries, particularly after repetitive impacts. To better detect abnormalities from mTBI, we performed longitudinal studies (baseline, 3, 6, and 42 days) using magnetic resonance diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) in adult mice after rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011